and not to the unknown chlorosyl fluoride, CIFO, and F_2 . Its thermal stability thus appears to be intermediate between that of ClF3¹⁵ and ClF5.¹⁶ The reaction chemistry of ClF₃O will be described in a separate paper.19

(19) C. J. Schack, C. B. Lindahl, D. Pilipovich, and K. O. Christe, Inorg. Chem., 11, 2201 (1972).

Acknowledgment.---We are pleased to acknowledge support for this work by the Office of Naval Research, Power Branch. We wish to thank Mr. S. Cohz for the mass-spectral work, Drs. J. S. Muirhead and J. D. Ray for the ¹⁹F nmr measurements, and J. Quaglino for the density measurement. We are also indebted to Dr. E. A. Lawton for his help and encouragement.

CONTRIBUTION FROM ROCKETDYNE, A DIVISION OF NORTH AMERICAN ROCKWELL CORPORATION, CANOGA PARK, CALIFORNIA 91304

Chlorine Trifluoride Oxide. II. Photochemical Synthesis

BY D. PILIPOVICH,* H. H. ROGERS, AND R. D. WILSON

Received September 8, 1971

Chlorine trifluoride oxide, ClF₃O, was synthesized from several gaseous reaction systems using uv activation. The fluorination of both ClO₂F and ClO₃F, using ClF₅ or F₂ as fluorinating agents, gave excellent yields of ClF₃O. In addition, the direct photochemical synthesis of ClF₃O from the elements Cl₂, F₂, and O₂ was successfully achieved. Other systems yielding ClF₃O were ClF₃-O₂ and ClF-IF₅O. Attempts were unsuccessful to photochemically prepare either BrF₅O from BrF₅ and O_2 or BrF_7 from $BrF_5 + F_2$.

Introduction

Halogen fluorides can be readily synthesized by direct fluorination of the corresponding halogens at appropriate temperatures and pressures.¹ Consequently, little attention has been devoted to their photochemical When the novel chlorine oxyfluoride, synthesis. CIF₃O, was discovered^{2,3} in 1965, its original synthesis involved handling of the treacherous³ starting material, Cl₂O. Therefore, alternate approaches, such as photochemical reactions, were studied which might yield ClF_3O . Of initial interest to us was the use of uv irradiation to achieve the "deoxygenation" of either ClO₂F or ClO₃F. One of these, ClO₂F, had previously been shown⁴ to degrade thermally to give CIF and O_2 . A stepwise deoxygenation of these oxyfluorides via the intermediate (and unknown) chlorosyl fluoride, ClOF, might in the presence of F_2 yield ClF₃O. In addition, the alternate approach, *i.e.*, the photochemical addition of oxygen to various chlorine fluorides, was investigated. Of particular interest was whether ClF₈ could combine with oxygen to form ClF₃O and the direct synthesis of ClF₃O from the elements, Cl₂, F₂, and O₂. After the successful completion of our study, Bougon, Isabey, and Plurien independently discovered⁵ the formation of ClF₃O when exposing a mixture of ClF₃ and OF₂ to uv irradiation. In this paper, we report the results of our original photochemical studies.

Experimental Section

Materials and Apparatus .- Perchloryl fluoride was purchased from Pennsalt Chemical Co. and used as received after verifying its purity through its infrared spectrum and vapor tension at -80° . Chloryl fluoride was synthesized by a modification of

Woolf's procedure⁶ and involved the fluorination of NaClO₃ with ClF3. Fluorine was produced at Rocketdyne and Cl2 and ClF3 were obtained from the Matheson Co. The ClF3 was purified by complexing with KF, removing volatiles at ambient temperature, and subsequently pumping off CIF3 at temperatures above 140°. Chlorine pentafluoride was prepared according to the method of Pilipovich, et al.,7 while chlorine monofluoride was synthesized from ClF3 and Cl2.8 Bromine pentafluoride (Matheson) was treated with F_2 at ambient temperature until the material was colorless. It was purified by fractional condensation through traps kept at -64 and -95° . The BrF₅ was retained in the -95° trap and showed no detectable impurities. The preparation and purification of IF₃O⁹ and ClF₃O³ have previously been described.

All the results listed in this paper was obtained with a Hanovia high-pressure Hg lamp, No. 679-A-36 (power input 450 W). The spectral energy distribution of radiated Hg lines for the lamp includes (Å, W): 2967, 4.3; 2652, 4.0; 2537, 5.8; 2482, 2.3; 2380, 2.3; and 2224, 3.7, according to the manufacturer's specifications. In addition, this lamp emits lines of shorter wavelength down to about 1700 Å (quartz limit). The distance between the lamp and the cell window was about 2 in.

The photolyses were carried out in a cell consisting of a stainless steel cylindrical body (3 in. long, 3 in. i.d., and 388 cm³ volume). One end of the cell was sealed with a welded plate. The other end was a machined flange onto which a 4-in. diameter optical grade sapphire window was clamped. A vacuum seal was obtained by using Teflon O-rings. Provision was made to condense materials into the cell via a stainless steel coldfinger (3 in. long, 3/8 in. o.d.) appended to the main cell body. An outlet was provided which was connected to a stainless steel-Teflon FEP vacuum line for product work-up. Cooling coils were brazed onto the outside of the cell body, and cold methanol was circulated to provide the cooling. The cell wall temperature was automatically controlled to within 3° of a preset temperature over the range -60° to ambient temperature. A removable metal lamphousing was positioned over the sapphire window and dry N₂ was passed over the window to cool the window, prevent condensation prior to the irradiation, and exclude atmospheric oxygen which might act as a filter for short wavelength uv radiation.

⁽¹⁾ L. Stein in "Halogen Chemistry," Vol. 1, V. Gutmann, Ed., Academic Press, New York, N. Y., 1967, Chapter 3.
(2) D. Pilipovich and R. D. Wilson, U. S. Patent, to be issued, 1972.

⁽³⁾ D. Pilipovich, C. B. Lindahl, C. J. Schack, R. D. Wilson, and K. O. Christe, Inorg. Chem., 11, 2189 (1972).

⁽⁴⁾ M. J. Heras, P. J. Aymonino, and H. J. Schumacher, Z. Phys. Chem. (Frankfurt am Main), 22, 161 (1959).

⁽⁵⁾ R. Bougon, J. Isabey, and P. Plurien, C. R. Acad. Sci., Ser. C, 271, 1366 (1970).

⁽⁶⁾ A. A. Woolf, J. Chem. Soc., 4113 (1954).

⁽⁷⁾ D. Pilipovich, W. Maya, E. A. Lawton, H. F. Bauer, D. F. Sheehan, R. D. Wilson, N. N. Ogimachi, F. C. Gunderloy, Jr., and V. G. Bedwell,

Inorg. Chem., 6, 1918 (1967). (8) H. Schmitz and H. J. Schumacher, Z. Naturforsch. A, 2, 362 (1947).

⁽⁹⁾ C. J. Schack, D. Pilipovich, S. N. Cohz, and D. F. Sheehan, J. Phys. Chem., 72, 4697 (1968).

TABLE I PHOTOCHEMICAL FORMATION OF CIF₂O FROM HALOGEN OXYFLUORIDES

Expt	Reaction	Temp,			Yield of
no.	time, min	°C	Reactants, ^b cm ²	Products, ^b cm ³	ClF:0, %°
1	60	15	$C1F_5$, 56.3; $C1O_2F$, 56.9	ClF_5 ; ClO_2F ; ClF_3 (trace)	0
2	60	-40	$C1F_5$, 55.6; $C1O_2F$, 55.6	$C1F_{3}O, 26; C1F_{3} 60$	47
3	60	- 40	C1F ₅ , 57.2; C1O ₃ F, 61.8	C1F ₃ O, 29; C1F ₈ 50; C1O ₃ F, 25	79
4	60	-60	$F_2, 65.9; ClO_3F, 61.3$	ClF ₃ O, 18; ClF ₃ , 10; ClO ₃ F, 33	64
5^a	120	-60	ClO ₃ F, 120.5	$C1O_3F$, 50; $C1F$, 43; $C1O_2F$, 8; O_2	0
6^a	60	-60	$C1F, 67.5; O_2, 67$	ClF, 51; ClF ₃ , 9; ClO ₂ F (trace); Cl ₂	0
7^a	60	-40	$C1F_{3}O, 69.4$	$C1F_{3}O, 49.6; C1F_{3}; O_{2}$	
8^a	60	- 60	C1F₃O, 61.7	$C1F_{3}O, 56.8$	
9ª	180	- 60	ClF ₃ , 31.5	ClF_3 , 21.1; ClF , 10.2; F_2 , 10.2	0
10	15	-60	CIF, 101.0 ; IF ₆ O, 51.4	$ClF_{3}O, 5; ClF, 69.3; Cl_{2}; IF_{5}$	10
11	60	-60	C1F, 95.0; IF_5O , 57.0	$ClF_{3}O$, 15; 79.5; Cl_{2} ; $ClO_{2}F$, IF_{5}	26

^a Control experiments. ^b All gas volumes in this paper are cm³ at STP. ^o Based on moles of oxyfluoride reacted.

0. CLF30 0.01 clo, ABSORBANCE (mm Hg⁻¹ cm⁻¹) BrFs CLEF 0,00 0,000 CÅ 0.00001 2400 2600 2800 3000 3200 1800 2000 2200 WAVELENGTH, ANGSTROMS

Figure 1.—Ultraviolet absorption spectra for ClF, ClF $_{\delta}$, ClF $_{\delta}$ O, ClO₂F, ClO₃F, and BrF_{δ} .

Photochemical Synthesis.-With the cell at ambient temperature and the condensing tube at -196° , the condensable reactants were loaded into the cell, followed by the addition of F_2 and/or O2. The amount of each reactant introduced was determined by volumetric measurements made in the vacuum system external to the cell. The flow of N2 was started over the cell window and the methanol cell-coolant flow was started. The condensing tube was allowed to reach the cell-body temperature, and after the reactants had mixed, the lamp was turned on. A shutter between the lamp and cell window was only removed when the lamp current had reached its full operating level. After the desired period of irradiation, the cell was warmed to ambient temperature and its contents fractionated in the vacuum line. The ClF₈O was trapped at -95°, measured volumetrically, and identified by its ir spectrum.¹⁰ The other reaction products were similarly separated and identified by infrared spectroscopy, vapor pressure, and gas density measurements.

Absorption Spectra .-- Uv spectra were obtained with a Cary Model 14 recording spectrophotometer. The cells were of 10-cm path length and constructed from 1-in. o.d. nickel tubing. Ultraviolet grade Linde sapphire windows were held in place with flanges and Teflon O-rings. Hoke M482m Monel bellows valves were used as cell closures. Prior to the introduction of the sample, the cell was passivated with F_2 and ClF_3 .

Results

Uv Absorption Spectra.—The absorption spectra of some of the starting materials were recorded to obtain insight into the uv activation processes. These spectra are shown in Figure 1. The results for CIF5 extend the work of Gatti, et al.,¹¹ to wavelengths shorter than 2640

(10) K. O. Christe and E. C. Curtis, Inorg. Chem., 11, 2196 (1972).

Å. Likewise, the CIF spectrum extends that reported by Schmitz and Schumacher.¹² Schmitz and Schumacher have also reported¹³ the uv spectrum of ClF_3 .

Synthesis of ClF₃O from Halogen Oxyfluorides.— The results of the reactions of F_2 , ClF, and ClF₅ with ClO₂F, ClO₃F, or IF₅O are given in Table I. The reaction temperatures employed ranged from +15 to -60° . The yield of ClF₃O at 15° was zero while at -60° yields as high as 79% were observed (based on 1 mol of ClF₃O from each mole of oxyfluoride reacted). Control experiments to determine the rate of decomposition of ClO₃F and ClF₃O were carried out. After 1 hr at -40and -60° , ClF₃O had decomposed to the extent of 28.5 and 8.0%, respectively. Surprisingly, ClO₃F decomposed at a rate of about 29%/hr at -60° . Furthermore, the control experiment (expt 6, Table I) showed a low level of oxygenation of ClF to ClO_2F .

Synthesis of ClF₃O from the Elements.—The results for the synthesis of ClF_3O from the elements, Cl_2 , F_2 , and O_2 , at -60° are shown in Table II. The conver-

TABLE II PHOTOCHEMICAL FORMATION OF C1F3O FROM The Elements^{*a*} at -60°

					% C12		
Expt	Reaction	Products, ^b cm ³			converted to		
no.	time, min	C1F3O	ClF3	ClO ₂ F	ClF ₈ O	ClF:	
1	15	Trace	45.2		Trace	84	
2	30	1.3	50.5	0.8	2.3	93	
3	60	7.3	38.3	1.8	13.3	70	
4	90	9.7	46.8	0.4	16.7	80	
5	180	15.9	32.9	2.9	29.7	61	
6	240	21.4	31.9		39.0	58	
7	36 0	25.0	29.4	0.4	44.6	52	
8°	60	0	37.7	3.9	0	71	
9ª	60.	0	49.3	0.8	0	88	
10e	180	7.5	40.1	4.9	13.2	71	

^a The ratio of $Cl_2: F_2: O_2$ in all experiments was 1:3:10 with the total amount of gas being about 400 cm³ and the total pressure being about 780 mm (i.e., approximately 28 cm³ of Cl₂, 85 cm³ of F₂, and 285 cm³ of O₂). ^b Remainder of products were ClF, F_2 , and O_2 . These were not measured. ° Pyrex filter used. ^d Vycor filter used. ^e Oxygen filter used.

sions to ClF₃O increased with increasing reaction time ranging from a trace after 15 min to 44.6% after 360 min. Most of the Cl₂ and F₂ were converted to ClF₃ during the first 15 min of irradiation (expt 1). The effective irradiation wavelengths for the reaction were established through the use of different filters. No ClF₃O was formed using either a Pyrex or Vycor filter

(12) H. Schmitz and H. J. Schumacher, An. Asoc. Quim. Argent., 38, 61 (1950).

⁽¹¹⁾ R. Gatti, R. L. Krieger, J. E. Sicre, and H. J. Schumacher, J. Inorg. Nucl. Chem., 28, 655 (1966).

⁽¹³⁾ H. Schmitz and H. J. Schumacher, ibid., 38, 363 (1950).

and the yield of $ClF_{3}O$ was drastically reduced by using a crude oxygen filter (*i.e.*, flowing oxygen rather than nitrogen for cooling the cell window).

Synthesis of ClF_3O from ClF_3 and O_2 .—The results for the synthesis of ClF_3O from ClF_3 and O_2 at -60° are shown in Table III. Here again the conversions

Table III Photochemical Formation of ClF₈O from ClF₈ and O_{2^a} at -60°

		•	-		
Expt	Reaction	Produc	ets, ^b cm ³	% ClF₃ converted	% ClF3 recovered
по.	time, min	C1F3O	C1F3	to ClF ₈ O	as ClF₃
1	60	0	29.4	0	98
2	90	1.3	32.5	3.9	97
3	180	3.2	29.1	9.6	87
4	360	6.6	25.3	20.8	79

^a ClF₈: O₂ ratios of about 1:10 were used in all experiments with the total amount of gas being about 340 cm³ and the total pressure being about 670 mm (*i.e.*, approximately 31 cm³ of ClF₃ and 310 cm³ of O₂). ^b Remainder of products were ClF, F₂, and O₂. These were not measured.

to ClF₃O increase with increasing reaction time with about 21% ClF₃O formed after 360 min. The amounts of ClF₃O formed from ClF₃-O₂ mixtures and from the elements are compared in Figure 2 as a function of the

Figure 2.—Photochemical conversion as a function of irradiation time at -60° .

irradiation time. It may be seen that even though the elements are rapidly converted to a ClF_3-O_2 mixture, a much longer induction period occurs when starting with a ClF_3-O_2 mixture and about four times more ClF_3O forms from the elements during a 6-hr experiment.

Attempted Synthesis of $BrF_5O.$ —Mixtures of BrF_5 and O_2 (mole ratio of 1:9), after exposure to uv irradiation for 1 to 3 hr at -40 to -60° , consisted exclusively of the unchanged starting materials. Similarly, the photolysis of BrF_5-F_2 mixtures (mole ratio of 1:9) did not result in the formation of any novel compound, such as BrF_7 . The unreacted BrF_5 was quantitatively recovered after completion of the experiment.

Discussion

The results obtained in this study demonstrate that uv photolysis constitutes a convenient high-yield synthesis for ClF_3O . The starting materials used for the photolysis reactions are quite different from those used in the chemical syntheses.⁸ They are more readily available and safer to handle than $ClONO_2$ or the shock-sensitive³ Cl_2O .

A wide choice of starting materials exists for the photochemical synthesis of ClF_3O . It appears that the photolysis of almost any system capable of producing active oxygen and either ClF, ClF_3 , or ClF_5 will produce ClF_3O . Thus, ClF_3O has been prepared from any

of the following reaction systems: $Cl_2-F_2-O_2$, ClF_3-O_2 , ClO₂F-ClF₅, ClO₃F-ClF₅, ClO₃F-F₂, and ClF-IF₅O. It may be seen from the data in Tables I, II, and III that starting with the elements or the ClF₃-O₂ mixture results in better yields of ClF₃O but the halogen oxyfluorides give much faster rates of formation of ClF₃O (in cm³/hr). The failure to observe ClF₃O in the ClF-O₂ system (expt 6, Table I) is most likely due to the short reaction time (60 min). Thus, a 1-hr initiation period was required for the ClF₃-O₂ system (expt 1, Table III) before any ClF₃O could be detected in the products. The number of possible reaction systems has recently been further extended by the independent work of Bougon, et al.⁵ The latter authors reported the preparation of ClF₃O by photolysis of the ClF₃-OF₂ system.

When considering the results obtained in the present investigation, it should be noted that some of the reactants and products were present in quantities which caused their partial condensation on the reactor walls. The vapor pressure data presented in Table IV indicate

TABLE IV							
VAPOR PRESSURE AND CALCULATED MAXIMUM							
Volume of Vapor in Reactor							
	∼Vapor pr	essure, mm—	∕Vapor volume, cm³ at STP ^f				
	-40°	-60°	-40°	60°			
ClF ₃ O ^a	22	5	13.1	3.3			
$C1_{2^{b}}$	>400	>100	>230	>65			
$C1F_5^{\circ}$	220	72	131	47			
$C1F_{8}^{b}$	47	10	28	7			
C1F ^b	>760	>760	>490	>450			
$C1O_8F^d$	1000	398	597	260			
ClO_2F^e	143	37	91	23			
~ *	0 I T		D C 1				

^a Reference 3. ^b D. R. Stull, *Ind. Eng. Chem.*, **39**, 517 (1947). ^c Reference 7. ^d R. L. Jarry, *J. Phys. Chem.*, **61**, 498 (1957). ^e H. Schmitz and H. J. Schumacher, *Z. Anorg. Allg. Chem.*, **249**, 238 (1942). ^f In 388-cm³ reactor, assuming ideal vapor pressure.

the amount of each species which will remain uncondensed at -40 and -60° and thus can participate in the photochemical reaction. It can be seen, for example, that at -60° most of the ClF₈O condenses and, hence, is not subject to decomposition by the irradiation. These vapor pressure considerations might also explain why ClF₈O photolyzes more rapidly at -40 than at -60° (expt 7 and 8 of Table I) and why ClO₈F photolyzes faster than ClF₈O (expt 5 and 8 of Table I).

The most convenient and practical reaction system for the photochemical synthesis of ClF₃O is obviously the one starting from the elements Cl_2 , F_2 , and O_2 . As can be seen from Table II and Figure 2, the synthesis of ClF₃O from the elements produces ClF₃ at a rapid rate during the first half-hour with yields around 90%. This implies that the synthesis of ClF₃O from the elements is closely related to that starting from ClF₈ and O₂, although the different rates and the existence of a 1-hr initiation period for the ClF3-O2 system are unexpected. The purpose of the present study was not to study the kinetics of any particular reaction, but rather to screen different reaction systems for their potential as a practical synthesis of ClF₃O. An independent, detailed kinetic study of these systems is in progress in our laboratory and will be published at a later time.¹⁴ Consequently, the discussion of the possi-

(14) A. Axworthy and K. Mueller, unpublished results.

CHLORINE TRIFLUORIDE OXIDE

ble reaction mechanisms will be limited in this paper to the most apparent aspects.

The selection of reaction temperatures below -25° is beneficial for the synthesis of ClF₃O. At reaction temperatures of -40° and below, the vapor pressure of ClF₃O is quite low, thus minimizing its photolytic decomposition according to

$$ClF_3O \xrightarrow{n\nu} ClF_3 + 1/2O_2$$

This decomposition path has been noted also during its pyrolysis and is consistent with the observation (expt 1, Table I) that at 15° no ClF₃O is formed from a system capable of producing it at a lower temperature.

The photolysis of either ClO_2F or ClO_3F in the presence of F_2 or ClF_5 gave ClF_3O in high yields. The observed (expt 5, Table I) degradation of ClO_3F to ClF, ClO_2F , and O_2 indicates a stepwise decomposition of ClO_3F , according to

$$ClO_{2}F \longrightarrow ClO_{2}F + \frac{1}{2}O_{2}$$

$$ClO_{2}F \longrightarrow ClOF + \frac{1}{2}O_{2}$$

$$ClOF \longrightarrow ClF + \frac{1}{2}O_{2}$$

The following data support this assumption. The decomposition of ClO_3F yields a substantial amount of ClO_2F , while the oxygenation of ClF to ClO_2F (expt 6, Table I) is very inefficient. Thus, the product of the first decomposition step of ClO_3F should be ClO_2F .

Some indications concerning the nature of the key intermediates were obtained from experiments involving the use of various filters during uv irradiation (Table II). The insertion of a Vycor filter (10% transmittance at 2250 Å) precluded the formation of ClF₃O from the elements. This result suggested the importance of oxygen activation in the "fixation" step. This assumption was substantiated by passing O₂ between the lamp and the cell, which vastly decreased the ClF₃O yield (compare expt 5 and 10, Table II).

Having thus established the importance of oxygen activation, it would be tempting to propose the combination of CIF_3 with an oxygen atom to form CIF_3O . This, however, appears unlikely since the rate of for-

mation of ClF_3O from ClF_3 and O_2 is much slower, particularly during the initial stages of the reaction, than the rate of formation from Cl_2 , F_2 , and O_2 (see Figure 2). It has been noted (expt 9, Table I) that ClF_3 slowly generates ClF upon uv irradiation and it is possible that ClF, and not ClF_3 , combines with O. The suggested reaction sequence would be

$$ClF_{3} \rightleftharpoons ClF + F_{2}$$

$$\frac{1}{2}O_{2} \longrightarrow O$$

$$ClF + O \rightleftharpoons ClOF$$

$$ClOF + F_{2} \longrightarrow ClF_{3}O$$

The unknown compound, ClOF, would be a plausible intermediate for both the oxygenation of ClF_3 and the deoxygenation of ClO_2F or ClO_3F (see above).

In the ClO₃F- and ClO₂F-containing systems, the postulated CIOF intermediate might be formed in two different ways: (1) by direct deoxygenation of ClO_2F or ClO₃F, and (2) by recombination of ClF with atomic oxygen. If (2) were the preferred reaction path, the rate of CIF₃O formation should be comparable for both the CIF_3-O_2 and the CIO_3F-F_2 systems, since both ClO₃F and ClF₃, upon photolysis, yield ClF at comparable rates (expt 5 and 9, Table I). However, this is not the case. The rate of CIF₃O formation for the ClO_3F-F_2 system is much higher than that found for the ClF₃-O₂ system. Therefore, it appears that at least some of the unstable CIOF intermediate must be fixed by fluorine during the deoxygenation of ClOF or ClO₂F. Attempts were unsuccessful to extend the above described technique toward the syntheses of the yet unknown molecules, BrF₅O and BrF₇.

Acknowledgment.—We wish to acknowledge support for this work by the Office of Naval Research, Power Branch. We are grateful to Drs. A. Axworthy and S. A. Golden for their help in correlating the data and for suggesting that the formation of CIF from CIF₈ might account for the induction period in the CIF₈–O₂ system, and to Drs. C. J. Schack and K. O. Christe for their helpful suggestions.