and not to the unknown chlorosyl fluoride, ClFO, and F_2 . Its thermal stability thus appears to be intermediate between that of CIF_3^{15} and CIF_5^{16} The reaction chemistry of CIF_3O will be described in a separate paper.I9

Inovg. Chem., **11,** 2201 (1972). (19) C. J. Schack, C. B. Lindahl, D. Pilipovich, and K. O. Christe,

F. A. Lawton for his help and encouragement.

Acknowledgment.--We are pleased to acknowledge support for this work by the Office of Naval Research, Power Branch. We wish to thank Mr. S. Cohz for the mass-spectral work, Drs. J. S. Muirhead and J. D. Ray for the 19F nmr measurements, and J. Quaglino for the density measurement. We are also indebted to Dr.

COXTRIBUTIOX FROM ROCKETDYNE, A DIVISION OF NORTH AMERICAN ROCKWELL CORPORATION, CANOGA PARK, CALIFORNIA 91304

Chlorine Trifluoride Oxide. **11.** Photochemical Synthesis

BY D. PILIPOVICH,* H. H. ROGERS, AND R. D. WILSON

Received September 8, *1971*

Chlorine trifluoride oxide, CIF₈O, was synthesized from several gaseous reaction systems using uv activation. The fluorination of both ClO₂F and ClO₃F, using ClF₅ or F₂ as fluorinating agents, gave excellent yields of ClF₃O. In addition, the direct photochemical synthesis of CIF_8O from the elements Cl_2 , \overline{F}_2 , and O_2 was successfully achieved. Other systems yielding CIF_3O were CIF_3-O_2 and $CIF-IF_5O$. Attempts were unsuccessful to photochemically prepare either BrF₅O from BrF₅ and O_2 or BrF_7 from $BrF_5 + F_2$.

Introduction

Halogen fluorides can be readily synthesized by direct fluorination of the corresponding halogens at appropriate temperatures and pressures.¹ Consequently, little attention has been devoted to their photochemical synthesis. When the novel chlorine oxyfluoride, $CIF₃O$, was discovered^{2,3} in 1965, its original synthesis involved handling of the treacherous³ starting material, $Cl₂O$. Therefore, alternate approaches, such as photochemical reactions, were studied which might yield $CIF₃O$. Of initial interest to us was the use of uv irradiation to achieve the "deoxygenation" of either $CIO₂F$ or $C1O_3F$. One of these, $C1O_2F$, had previously been shown⁴ to degrade thermally to give ClF and O_2 . A stepwise deoxygenation of these oxyfluorides *via* the intermediate (and unknown) chlorosyl fluoride, ClOF, might in the presence of F_2 yield ClF₃O. In addition, the alternate approach, *;.e.,* the photochemical addition of oxygen to various chlorine fluorides, was investigated. Of particular interest was whether CIF_3 could combine with oxygen to form $CIF₃O$ and the direct synthesis of $CIF₃O$ from the elements, $Cl₂$, $F₂$, and $O₂$. After the successful completion of our study, Bougon, Isabey, and Plurien independently discovered⁵ the formation of $CIF₃O$ when exposing a mixture of $CIF₃$ and $OF₂$ to uv irradiation. In this paper, we report the results of our original photochemical studies.

Experimental Section

Materials and Apparatus.-Perchloryl fluoride was purchased from Pennsalt Chemical Co. and used as received after verifying its purity through its infrared spectrum and vapor tension at -80'. Chloryl fluoride was synthesized by a modification of \Voolf's procedure6 and involved the fluorination of XaC103 with ClF₃. Fluorine was produced at Rocketdyne and Cl₂ and ClF₃ were obtained from the Matheson Co. The ClF₃ was purified by complexing with KF, removing volatiles at ambient temperature, and subsequently pumping off ClF₃ at temperatures above 140° . Chlorine pentafluoride was prepared according to the method of Pilipovich, et al.,⁷ while chlorine monofluoride was synthesized from CIF_3 and Cl_2 .⁸ Bromine pentafluoride (Matheson) was treated with F_2 at ambient temperature until the material was colorless. It was purified by fractional condensation through traps kept at -64 and -95° . The BrF₅ was retained in the -95° trap and showed no detectable impurities. The preparation and purification of $IF₃O⁹$ and $ClF₃O³$ have previously been described.

All the results listed in this paper was obtained with a Hanovia high-pressure Hg lamp, No. 679-A-36 (power input 450 W). The spectral cnergy distribution of radiated Hg lines for the lamp includes **(A, 1%'):** 2967, 4.3; 2652, 4.0; 2537, 5.8; 2482, 2.3; 2380, 2.3; and 2224, 3.7, according to the manufacturer's specifications. In addition, this lamp emits lines of shorter wavelength down to about 1700 \AA (quartz limit). The distance between the lamp and the cell window was about 2 in.

The photolyses were carried out in a cell consisting of a stainless steel cylindrical body **(3** in. long, **3** in. i.d., and 388 cm3 volume). One end of the cell was sealed with a welded plate. The other end was a machined flange onto which a 4-in. diameter optical grade sapphire window was clamped. **A** vacuum seal was obtained by using Teflon O-rings. Provision was made to condense materials into the cell *via* a stainless steel coldfinger **(3** in. long, $\frac{3}{8}$ in. o.d.) appended to the main cell body. An outlet was provided which was connected to a stainless steel-Teflon FEP vacuum line for product work-up. Cooling coils were brazed onto the outside of the cell body, and cold methanol was circulated to provide the cooling. The cell wall temperature was automatically controlled to within *3'* of a preset temperature over the range -60° to ambient temperature. A removable metal lamphousing was positioned over the sapphire window and dry **X2** was passed over the window to cool the window, prevent condensation prior to the irradiation, and exclude atmospheric oxygen which might act as a filter for short wavelength uv radiation.

(9) C. J. Schack, D. Pilipovich, S. N. Cohz, and I). F. Sheehan, *J. Phys.* Chem., **72**, 4697 (1968).

⁽¹⁾ L. Stein in "Halogen Chemistry," Vol. 1, V. Gutmann, Ed., Academic Press, New York, N. *Y.,* 1967, Chapter **3.**

⁽²⁾ D. Pilipovich and R. D. Wilson, U. S. Patent, to be issued, 1972.

⁽³⁾ D. Pilipovich, C. B. Lindahl, C. J. Schack, R. D. Wilson, and K. 0. Christe, Inorp. *Chev.,* **11,** 2185 (1572).

⁽⁴⁾ Mi. J. Heras, P. J. Aymonino, and H. J. Schumacher, *2. Phys. Chem. (Fvankjuvl am Main),* **22,** 161 (1959).

⁽⁶⁾ R. Bougon, J. Isabey, and P. Plurien, C. *R. Acad. Sci., Set. C,* **271,** 1366 (1570).

⁽⁶⁾ **A. A.** Woolf, *J. Chem. Soc.,* 4113 (1554).

⁽⁷⁾ D. Pilipovich, W. Maya, E. **A.** Lawton, H. F. Bauer, 11. F. Sheehan, R. D. Wilson, N. N. Ogimachi, F. C. Gunderloy, Jr., and V. G. Bedwell,

InovE. Chem., **6,** 1918 (1967). (8) H. Schmitz and H. J. Schurnacher, *Z. Salwfwsch. A.* **2, 362** (1947)

TABLE I PHOTOCHEMICAL FORMATION OF CIF₃O FROM HALOGEN OXYFLUORIDES

Expt	Reaction	Temp,			Yield of
no.	time, min	۰c	Reactants, δ cm ²	Products, ^b cm ³	CIF ₃ O, $\%$ ⁶
	60	15	CIF_6 , 56.3; CIO_2F , 56.9	ClF_5 ; ClO_2F ; ClF_3 (trace)	
	60	-40	CIF_6 , 55.6; CIO_2F , 55.6	$CIF8O1 26$; $CIF8 60$	47
3	60	-40	CIF_5 , 57.2; CIO_3F , 61.8	$CIF_8O, 29$; $CIF_8 50$; $CIO_3F, 25$	79
	60	-60	F_2 , 65.9; ClO ₃ F, 61.3	$CIF_3O, 18$; $CIF_3, 10$; $CIO_3F, 33$	64
5 ^a	120	-60	ClO_3F , 120.5	ClO_3F , 50; CIF, 43; CIO ₂ F, 8; O ₂	0
6 ^a	60	-60	CIF, 67.5 ; O ₂ , 67	CIF, 51; CIF ₃ , 9; CIO ₂ F (trace); Cl ₂	
7а	60	-40	CIF _a O _a 69.4	$CIF_3O, 49.6$; CIF_3 ; O_2	
8ª	60	-60	CIF ₃ O ₁ 61.7	CIF ₃ O. 56.8	
ga	180	-60	$CIF_3, 31.5$	CIF_3 , 21.1; CIF , 10.2; F_2 , 10.2	
10	15	-60	CIF. 101.0 : IF _b O, 51.4	$CIF_3O, 5$; $CIF, 69.3$; CI_2 ; IF_5	10
	60	-60	CIF, 95.0; IF ₅ O, 57.0	$CIF_3O, 15; 79.5; Cl_2; ClO_2F, IF_5$	26

a Control experiments. ^b All gas volumes in this paper are cm³ at STP. C Based on moles of oxyfluoride reacted.

 $\mathbf{0}$ cer₃0 $0,0$ FC20, ABSORBANCE (mm Hg⁻¹ cm⁻¹) BrF, CAF $0,00$ 0.000 cø 1m *m 2m m* **2600** *28Wm* **³²⁰⁰ WAVELENGTH, ANGSTROMS**

Figure 1.—Ultraviolet absorption spectra for ClF, ClF₅, ClF₃O, ClO_2F , ClO_3F , and BrF_6 .

Photochemical Synthesis.--With the cell at ambient temperature and the condensing tube at -196° , the condensable reactants were loaded into the cell, followed by the addition of F_2 and/or *02.* The amount of each reactant introduced was determined by volumetric measurements made in the vacuum system external to the cell. The flow of N_2 was started over the cell window and the methanol cell-coolant flow was started. The condensing tube was allowed to reach the cell-body temperature, and after the reactants had mixed, the lamp was turned on. **A** shutter between the lamp and cell window was only removed when the lamp current had reached its full operating level. After the desired period of irradiation, the cell was warmed to ambient temperature and its contents fractionated in the vacuum line. The ClF₃O was trapped at -95° , measured volumetrically, and identified by its ir spectrum.¹⁰ The other reaction products were similarly separated and identified by infrared spectroscopy, vapor pressure, and gas density measurements.

Absorption Spectra.-Uv spectra were obtained with a Cary Model 14 recording spectrophotometer. The cells were of 10-cm path length and constructed from 1-in. 0.d. nickel tubing. Ultraviolet grade Linde sapphire windows were held in place with flanges and Teflon O-rings. Hoke M482m Monel bellows valves were used as cell closures. Prior to the introduction of the sample, the cell was passivated with F_2 and CIF_3 .

Results

Uv Absorption Spectra.—The absorption spectra of some of the starting materials were recorded to obtain insight into the uv activation processes. These spectra are shown in Figure 1. The results for $CIF₅$ extend the work of Gatti, *et al.*,¹¹ to wavelengths shorter than 2640

(10) K. 0. Christe and E. C Curtis, *Inovg. Chem.,* **11,** 2196 (1972).

A. Likewise, the C1F spectrum extends that reported by Schmitz and Schumacher.12 Schmitz and Schumacher have also reported¹³ the uv spectrum of CIF_3 .

Synthesis of ClF₃O from Halogen Oxyfluorides.-The results of the reactions of F_2 , ClF, and ClF₅ with $ClO₂F$, $ClO₃F$, or IF₅O are given in Table I. The reaction temperatures employed ranged from $+15$ to -60° . The yield of ClF₃O at 15° was zero while at -60° yields as high as 79% were observed (based on 1 mol of C1F3O from each mole of oxyfluoride reacted). Control experiments to determine the rate of decomposition of ClO_3F and ClF_3O were carried out. After 1 hr at -40 and $-60^{\circ},$ ClF₃O had decomposed to the extent of 28.5 and 8.0% , respectively. Surprisingly, ClO₃F decomposed at a rate of about 29% /hr at -60° . Furthermore, the control experiment (expt 6, Table I) showed a low level of oxygenation of ClF to ClO_2F .

Synthesis of CIF_aO from the Elements.—The results for the synthesis of CIF₃O from the elements, Cl₂, F₂, and O_2 , at -60° are shown in Table II. The conver-

TABLE I1 PHOTOCHEMICAL FORMATION OF CIF₃O FROM THE ELEMENTS^{a} AT -60°

				$\%$ Cl ₂		
Reaction				converted to		
time, min	CIF ₃ O	CIF ₃	$C1O_2F$	CIFsO	CIF ₃	
15	Trace	45.2		Trace	84	
30	1.3	50.5	0.8	2.3	93	
60	7.3	38.3	1.8	13.3	70	
90	9.7	46.8	0.4	16.7	80	
180	-15.9	32.9	2.9	29.7	61	
240	21.4	31.9		39.0	58	
360	25.0	29.4	0.4	44.6	52	
60	0	37.7	3.9	0	71	
60.	0	49.3	0.8	0	88	
180	7.5	40.1	4.9	13.2	71	
				$\overline{}$ -Products, ^b cm ³ ------		

 a The ratio of $Cl_2: F_2: O_2$ in all experiments was $1:3:10$ with the total amount of gas being about 400 cm³ and the total pressure being about 780 mm $(i.e.,$ approximately 28 cm³ of Cl₂, 85 cm³ of F₂, and 285 cm³ of O₂). ^b Remainder of products were CIF, F_2 , and O_2 . These were not measured. \circ Pyrex filter used. Vycor filter used. **e** Oxygen filter used.

sions to $CIF₃O$ increased with increasing reaction time ranging from a trace after 15 min to 44.6% after 360 min. Most of the $Cl₂$ and $F₂$ were converted to $ClF₃$ during the first 15 min of irradiation (expt **I).** The effective irradiation wavelengths for the reaction were established through the use of different filters. No $CIF₃O$ was formed using either a Pyrex or Vycor filter

(12) H. Schmitz and H. J. Schumacher, *An. Asoc. Quim. Avgenj.,* **98,** 61 (1950).

⁽¹¹⁾ R. Gatti, R. L. Krieger, J. E. Sicre, and H. J. Schumacher, *J. Inovg. Nucl Chem.,* **28,** 655 (1966).

⁽¹³⁾ H. Schmitz and H. J. Schumacher, *ibid.,* **38,** 363 (1950).

and the yield of $CIF₃O$ was drastically reduced by using a crude oxygen filter *(;.e.,* flowing oxygen rather than nitrogen for cooling the cell window).

Synthesis of ClF₃O from ClF₃ and O_2 .—The results for the synthesis of ClF₃O from ClF₃ and O₂ at -60° are shown in Table 111. Here again the conversions

TABLE **I11** PHOTOCHEMICAL FORMATION OF CIF3O FROM CIF_8 AND O_2 ^a AT -60°

Expt no.	Reaction time, min	C1F ₃ O	\leftarrow -Products, ^b cm ³ -- C1Fs	$\%$ ClF ₃ converted to CIF ₃ O	$\%$ CIF _s recovered as ClF ₃
	60		29.4		98
$\overline{2}$	90	1.3	32.5	3.9	97
3	180	3.2	29.1	9.6	87
	360	6.6	25.3	20.8	79

*⁵*ClFs : *02* ratios of about 1 : 10 were used in all experiments with the total amount of gas being about 340 cm3 and the total pressure being about 670 mm (i.e., approximately 31 cm³ of ClF₃ and 310 cm³ of O_2). ^{*b*} Remainder of products were ClF, F_2 , and O_2 . These were not measured.

to ClF30 increase with increasing reaction time with about 21% ClF₃O formed after 360 min. The amounts of CIF_3O formed from CIF_3-O_2 mixtures and from the elements are compared in Figure *2* as a function of the

Figure 2.-Photochemical conversion as a function of irradiation time at -60° .

irradiation time. It may be seen that even though the elements are rapidly converted to a CIF_3-O_2 mixture, a much longer induction period occurs when starting with a CIF_3-O_2 mixture and about four times more ClF30 forms from the elements during a 6-hr experiment.

Attempted Synthesis of BrF₅O.--Mixtures of BrF₅ and $O₂$ (mole ratio of 1:9), after exposure to uv irradiation for 1 to 3 hr at -40 to -60° , consisted exclusively of the unchanged starting materials. Similarly, the photolysis of $BrF₅-F₂$ mixtures (mole ratio of 1:9) did not result in the formation of any novel compound, such as $BrF₇$. The unreacted $BrF₅$ was quantitatively recovered after completion of the experiment.

Discussion

The results obtained in this study demonstrate that uv photolysis constitutes a convenient high-yield synthesis for CIF_3O . The starting materials used for the photolysis reactions are quite different from those used in the chemical syntheses. 3 They are more readily available and safer to handle than $CIONO₂$ or the shock-sensitive³ $Cl₂O$.

A wide choice of starting materials exists for the photochemical synthesis of C1F30. It appears that the photolysis of almost any system capable of producing active oxygen and either ClF, CIF_3 , or CIF_5 will produce CIF_3O . Thus, CIF_3O has been prepared from any

of the following reaction systems: $Cl_2-F_2-O_2$, ClF_3-O_2 , ClO_2F-ClF_5 , ClO_3F-ClF_5 , ClO_3F-F_2 , and $ClF-IF_5O$. It may be seen from the data in Tables I, 11, and I11 that starting with the elements or the CIF_3-O_2 mixture results in better yields of ClF₃O but the halogen oxyfluorides give much faster rates of formation of $CIF₃O$ (in cm³/hr). The failure to observe ClF₃O in the $CIF-O₂$ system (expt 6, Table I) is most likely due to the short reaction time (60 min). Thus, a 1-hr initiation period was required for the CIF_3-O_2 system (expt 1, Table III) before any ClF₃O could be detected in the products. The number of possible reaction systems has recently been further extended by the independent work of Bougon, *et aL6* The latter authors reported the preparation of ClF₃O by photolysis of the ClF₃-OF₂ system.

\%'hen considering the results obtained in the present investigation, it should be noted that some of the reactants and products were present in quantities which caused their partial condensation on the reactor walls. The vapor pressure data presented in Table IV indicate

^QReference 3. D. R. Stull, *Ind. Eng. Chew.,* **39,** 517 (1947). ^{*e*} Reference 7. ^{*d*} R. L. Jarry, *J. Phys. Chem.*, **61**, 498 (1957). *^e*H. Schmitz and H. J. Schurnacher, *2. Anorg. A&. Chem.,* **249,** 238 (1942). f In 388-cm3 reactor, assuming ideal vapor pressure.

the amount of each species which mill remain uncondensed at -40 and -60° and thus can participate in the photochemical reaction. It can be seen, for example, that at -60° most of the ClF₃O condenses and, hence, is not subject to decomposition by the irradiation. These vapor pressure considerations might also explain why ClF₃O photolyzes more rapidly at -40 than at -60° (expt 7 and 8 of Table I) and why $ClO₃F$ photolyzes faster than CIF_3O (expt 5 and 8 of Table I).

The most convenient and practical reaction system for the photochemical synthesis of $CIF₃O$ is obviously the one starting from the elements Cl_2 , F_2 , and O_2 . As can be seen from Table I1 and Figure **2,** the synthesis of $CIF₃O$ from the elements produces $CIF₃$ at a rapid rate during the first half-hour with yields around 90% . This implies that the synthesis of $CIF₃O$ from the elements is closely related to that starting from $CIF₃$ and *02,* although the different rates and the existence of a 1-hr initiation period for the $C1F_3-O_2$ system are unexpected. The purpose of the present study was not to study the kinetics of any particular reaction, but rather to screen different reaction systems for their potential as a practical synthesis of ClF₃O. An independent, detailed kinetic study of these systems is in progress in our laboratory and will be published at a later time.¹⁴ Consequently, the discussion of the possi-

(14) A. **Axworthy** and K. Mueller, unpublished results.

ble reaction mechanisms will be limited in this paper to the most apparent aspects.

The selection of reaction temperatures below -25° is beneficial for the synthesis of CIF_3O . At reaction temperatures of -40° and below, the vapor pressure of CIF30 is quite low, thus minimizing its photolytic decomposition according to ording to
ClF_aO $\xrightarrow{h\nu}$ ClF_a + ¹/₂O₂

$$
CIF_3O \xrightarrow{h\nu} CIF_3 + \frac{1}{2}O_2
$$

This decomposition path has been noted also during its pyrolysis and is consistent with the observation (expt 1, Table I) that at 15° no ClF₃O is formed from a system capable of producing it at a lower temperature.

The photolysis of either $C1O_2F$ or $C1O_3F$ in the presence of F_2 or ClF_5 gave ClF_3O in high yields. The observed (expt 5, Table I) degradation of ClO₃F to ClF, $C1O_2F$, and O_2 indicates a stepwise decomposition of $CIO₃F$, according to ClF₅ gave ClF₃O in hightle
5, Table I) degradation
1. O₂ indicates a stepwishing to
ClO₃F \longrightarrow ClO₂F $+$ $\frac{1}{2}$ O₂
ClO₃F \longrightarrow ClOF $+$ $\frac{1}{2}$ O₂

Using to

\n
$$
ClO_3F \longrightarrow ClO_2F + \frac{1}{2}O_2
$$
\n
$$
ClO_2F \longrightarrow ClOF + \frac{1}{2}O_2
$$
\n
$$
ClOF \longrightarrow ClF + \frac{1}{2}O_2
$$

The following data support this assumption. The decomposition of C103F yields a substantial amount of ClO₂F, while the oxygenation of ClF to ClO₂F (expt 6, Table I) is very inefficient. Thus, the product of the first decomposition step of $C1O_3F$ should be $C1O_2F$.

Some indications concerning the nature of the key intermediates were obtained from experiments involving the use of various filters during uv irradiation (Table II). The insertion of a Vycor filter (10% transmittance at 2250 Å) precluded the formation of CIF_3O from the elements. This result suggested the importance of oxygen activation in the "fixation" step. This assumption was substantiated by passing *02* between the lamp and the cell, which vastly decreased the $CIF₃O$ yield (compare expt *5* and 10, Table 11).

Having thus established the importance of oxygen activation, it would be tempting to propose the combination of $CIF₃$ with an oxygen atom to form $CIF₃O$. This, however, appears unlikely since the rate of formation of CIF_3O from CIF_3 and O_2 is much slower, particularly during the initial stages of the reaction, than the rate of formation from Cl_2 , F_2 , and O_2 (see Figure *2).* It has been noted (expt 9, Table I) that ClF3 slowly generates ClF upon uv irradiation and it is possible that ClF, and not CIF_3 , combines with O. The suggested reaction sequence would be

$$
\begin{aligned}\n\text{CIF}_3 &\rightleftarrows \text{CIF} + \text{F}_2 \\
\downarrow_2\text{O}_2 &\longrightarrow \text{O} \\
\text{CIF} + \text{O} &\rightleftarrows \text{ClOF} \\
\text{ClOF} + \text{F}_2 &\longrightarrow \text{CIF}_3\text{O}\n\end{aligned}
$$

The unknown compound, CIOF, would be a plausible intermediate for both the oxygenation of CIF_3 and the deoxygenation of $C1O_2F$ or $C1O_3F$ (see above).

In the $ClO₃F-$ and $ClO₂F-$ containing systems, the postulated ClOF intermediate might be formed in two different ways: (1) by direct deoxygenation of $C1O_2F$ or C103F, and *(2)* by recombination of ClF with atomic oxygen. If *(2)* were the preferred reaction path, the rate of ClF₃O formation should be comparable for both the CIF_3-O_2 and the CIO_3F-F_2 systems, since both C103F and C1F3, upon photolysis, yield C1F at comparable rates (expt *5* and 9, Table I). However, this is not the case. The rate of ClF3O formation for the ClO_3F-F_2 system is much higher than that found for the CIF_3-O_2 system. Therefore, it appears that at least some of the unstable ClOF intermediate must be fixed by fluorine during the deoxygenation of ClOF or C102F. Attempts were unsuccessful to extend the above described technique toward the syntheses of the yet unknown molecules, BrF_5O and BrF_7 .

Acknowledgment.--We wish to acknowledge support for this work by the Office of Naval Research, Power Branch. We are grateful to Drs. A. Axworthy and *S.* A. Golden for their help in correlating the data and for suggesting that the formation of CIF from CIF_8 might account for the induction period in the CIF_3-O_2 system, and to Drs. C. J. Schack and K. 0. Christe for their helpful suggestions.